Problema 1
A la entrada de la escuela, se les aplicó a 156 niños una encuesta respecto a sus juguetes favoritos.
La encuesta arrojó los siguientes resultados:
▪ A 52 niños les gustaba el balón; a 63 les gustaban los carritos; a 87 les gustaban los videojuegos.
▪ Además algunos de ellos coinciden en que les gustaba mas de un juguete: 26 juegan con el balón y carritos; 37 juegan con carritos y videojuegos; 23 juegan con el balón y los videojuegos; por ultimo 7 expresaron su gusto por los tres.
a) ¿A cuántos niños les gusta otro juguete no mencionado en la encuesta?
b) ¿A cuántos niños les gusta solamente jugar con los videojuegos?
c) ¿A cuántos niños les gusta solamente jugar con el balón?Problema 2
La secretaría de educación municipal requiere la provisión de 29 cargos docentes en las siguientes áreas: 13 profesores en matemáticas, 13 profesores en física y 15 en sistemas. Para el cubrimiento de los cargos se requiere que: 6 dicten matemáticas y física, 4 dicten física y sistemas y 5 profesores dicten matemáticas y sistemas.
Determinar:
a) ¿Cuántos profesores se requiere que dicten las 3 áreas?
b) ¿Cuántos profesores se requiere para dictar matemáticas únicamente?
c) ¿Cuántos profesores se requiere para dictar matemáticas y sistemas pero no física?Problema 3
Se encuesta a 150 familias consultando por el nivel educacional actual de sus hijos.
Los resultados obtenidos son:
▪ 10 familias tienen hijos en Enseñanza Básica, Enseñanza Media y Universitaria.
▪ 16 familias tienen hijos en Enseñanza Básica y Universitaria.
▪ 30 familias tienen hijos en Enseñanza Media y Enseñanza Básica.
▪ 22 familias tienen hijos en Enseñanza Media y Universitaria.
▪ 72 familias tienen hijos en Enseñanza Media.
▪ 71 familias tienen hijos en Enseñanza Básica.
▪ 38 familias tienen hijos en Enseñanza Universitaria.
Con la información anterior, deducir:
- El número de familias que solo tienen hijos universitarios.
- El número de familias que tienen hijos solo en dos niveles.
- El número de familias que tienen hijos que no estudian.Problema 4
En una encuesta sobre consumo de bebidas, se obtuvieron los siguientes datos: a) 67% beben A o B, y 13% beben ambas. b) 59% beben B o C y 11% beben ambas. c) 75% beben A o C y 15% beben ambas. d) el 16% no consume ninguna bebida.
1. Calcular el porcentaje que consume sólo una bebida.
2. Determine el porcentaje que beben las tres bebidas
Una
encuesta sobre 500 estudiantes inscritos en una o más asignaturas de
Matemática, Física y Química durante un semestre, reveló los siguientes
números de estudiantes en los cursos indicados: Matemática 329, Física
186, Química 295, Matemática y Física 83, Matemática y Química 217,
Física y Química 63. Cuántos alumnos estarán inscritos en:
a) Los tres cursosb) Matemática pero no Química
c) Física pero no matemática
d) Química pero no Física
e) Matemática o Química, pero no Física
f) Matemática y Química, pero no Física
g) Matemática pero no Física ni Química
Problema 6
Una encuesta sobre 200 personas acerca del consumo de tres detergentes -Albino, Blancura y Claridad- reveló los siguientes datos:
▪ 126 personas consumían Claridad.
▪ 124 personas no consumían Albino.
▪ 36 usuarios de detergente no consumían ni Albino ni Blancura.
▪ 170 personas consumían por lo menos uno de los tres productos.
▪ 60 personas consumían Albino y Claridad.
▪ 40 personas consumían los tres productos.
▪ 56 personas no consumían Blancura.
A) ¿Cuántas personas consumían solamente Blancura?
B) ¿Cuántas personas consumían Albino y Blancura?
C) ¿Cuántas personas consumían solamente Albino?Más ejemplos de Diagramas de Venn de tres conjuntos.
Ejemplo 1
De una encuesta hecha a 135 personas para establecer preferencias de lectura de las revistas A, B y C; se obtienen los siguientes resultados: Todos leen alguna de las 3 revistas; todos, menos 40, leen A; 15 leen A y B pero no C, 6 leen B y C pero no A; 10 leen sólo C. El número de los que leen A y C es el doble del número de los que leen las 3 revistas. El número de los que leen sólo B es el mismo que el total de los que leen A y C. Según todo esto, hallar el número de los que leen solamente A.
Ejemplo 2
De un grupo de 62 trabajadores, 25 laboran en lafábrica A, 33 trabajan
en la fábrica B, 40 laboran en la fábrica C y 7 trabajadores están
contratados en las tres fábricas. ¿Cuántas personas trabajan en dos de
estas fábricas solamente?
Ejemplo 3
De un grupo de 80 personas:- 27 leían la revista A, pero no leían la revista B.
- 26 leían la revista B, pero no C.
- 19 leían C pero no A.
- 2 las tres revistas mencionadas.
¿Cuántos preferían otras revistas?
En una investigación realizada a un grupo de 100 personas, que estudiaban varios idiomas fueron los siguientes: Español 28, Alemán 30, Francés 42, Español y Alemán 8, Español y Francés 10, Alemán y Francés 5 y los tres idiomas 3.
a) ¿Cuántos alumnos no estudiaban idiomas?
b) ¿Cuántos alumnos tenían como francés el único idioma de estudio?
No hay comentarios:
Publicar un comentario