miércoles, 22 de agosto de 2012

PROPIEDADES DE LA MEDIA ARITMETICA

 PROPIEDEDES DE LA MEDIA ARITMETICA

Definición de media aritmética

La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total de datos.
símbolo de la media aritmética es el símbolo de la media aritmética.
fórmula de la media
media

Ejemplo

Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.
media aritmética

Media aritmética para datos agrupados

Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la media es:
media
media

Ejercicio de media aritmética

En un test realizado a un grupo de 42 personas se han obtenido las puntuaciones que muestra la tabla. Calcula la puntuación media.
  xi fi xi · fi
[10, 20) 15 1 15
[20, 30) 25 8 200
[30,40) 35 10 350
[40, 50) 45 9 405
[50, 60 55 8 440
[60,70) 65 4 260
[70, 80) 75 2 150
    42 1 820
media

Propiedades de la media aritmética

1. La suma de las desviaciones de todas las puntuaciones de una distribución respecto a la media de la misma igual a cero.
expresión
La suma de las desviaciones de los números 8, 3, 5, 12, 10 de su media aritmética 7.6 es igual a 0:
8 − 7.6 + 3 − 7.6 + 5 − 7.6 + 12 − 7.6 + 10 − 7.6 =
= 0. 4 − 4.6 − 2.6 + 4. 4 + 2. 4 = 0
2. La suma de los cuadrados de las desviaciones de los valores de la variable con respecto a un número cualquiera se hace mínima cuando dicho número coincide con la media aritmética.
mínimo
3. Si a todos los valores de la variable se les suma un mismo número, la media aritmética queda aumentada en dicho número.
4. Si todos los valores de la variable se multiplican por un mismo número la media aritmética queda multiplicada por dicho número.

Observaciones sobre la media aritmética

1. La media se puede hallar sólo para variables cuantitativas.
2. La media es independiente de las amplitudes de los intervalos.
3. La media es muy sensible a las puntuaciones extremas. Si tenemos una distribución con los siguientes pesos:
65 kg, 69kg , 65 kg, 72 kg, 66 kg, 75 kg, 70 kg, 110 kg.
La media es igual a 74 kg, que es una medida de centralización poco representativa de la distribución.
4. La media no se puede calcular si hay un intervalo con una amplitud indeterminada.
  xi fi
[60, 63) 61.5 5
[63, 66) 64.5 18
[66, 69) 67.5 42
[69, 72) 70.5 27
[72, ∞ )   8
    100
En este caso no es posible hallar la media porque no podemos calcular la marca de clase de último intervalo.

 -----------------------------------------------------------------------------------------------------

MEDIA, MEDIANA, MODA

Moda

La moda es el valor que tiene mayor frecuencia absoluta.
Se representa por Mo.
Se puede hallar la moda para variables cualitativas y cuantitativas.
Hallar la moda de la distribución:
2, 3, 3, 4, 4, 4, 5, 5 Mo= 4
Si en un grupo hay dos o varias puntuaciones con la misma frecuencia y esa frecuencia es la máxima, la distribución es bimodal o multimodal, es decir, tiene varias modas.
1, 1, 1, 4, 4, 5, 5, 5, 7, 8, 9, 9, 9Mo= 1, 5, 9
Cuando todas las puntuaciones de un grupo tienen la misma frecuencia, no hay moda.
2, 2, 3, 3, 6, 6, 9, 9
Si dos puntuaciones adyacentes tienen la frecuencia máxima, la moda es el promedio de las dos puntuaciones adyacentes.
0, 1, 3, 3, 5, 5, 7, 8Mo = 4

Cálculo de la moda para datos agrupados

1º Todos los intervalos tienen la misma amplitud.

fórmula de la moda
Li-1 es el límite inferior de la clase modal.
fi es la frecuencia absoluta de la clase modal.
fi--1 es la frecuencia absoluta inmediatamente inferior a la en clase modal.
fi-+1 es la frecuencia absoluta inmediatamente posterior a la clase modal.
ai es la amplitud de la clase.
También se utiliza otra fórmula de la moda que da un valor aproximado de ésta:
moda

Ejemplo

Calcular la moda de una distribución estadística que viene dada por la siguiente tabla:
  fi
[60, 63) 5
[63, 66) 18
[66, 69) 42
[69, 72) 27
[72, 75) 8
  100
moda
moda

2º Los intervalos tienen amplitudes distintas.

En primer lugar tenemos que hallar las alturas.
alturas
La clase modal es la que tiene mayor altura.
moda

La fórmula de la moda aproximada cuando existen distintas amplitudes es:
moda
moda
moda

Mediana

Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.

Cálculo de la mediana

1 Ordenamos los datos de menor a mayor.
2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.
2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5
3 Si la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales.
7, 8, 9, 10, 11, 12Me= 9.5

Cálculo de la mediana para datos agrupados

La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre cociente.
mediana
Li-1 es el límite inferior de la clase donde se encuentra la mediana.
cociente es la semisuma de las frecuencias absolutas.
Fi-1 es la frecuencia acumulada anterior a la clase mediana.
ai es la amplitud de la clase.
La mediana es independiente de las amplitudes de los intervalos.

Ejemplo

Calcular la mediana de una distribución estadística que viene dada por la siguiente tabla:
  fi Fi
[60, 63) 5 5
[63, 66) 18 23
[66, 69) 42 65
[69, 72) 27 92
[72, 75) 8 100
  100  
100 / 2 = 50
Clase modal: [66, 69)
mediana

Media aritmética

La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total de datos.
símbolo de la media aritmética es el símbolo de la media aritmética.
fórmula de la media
media

Ejemplo

Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.
media aritmética

Media aritmética para datos agrupados

Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la media es:
media
media

Ejercicio de media aritmética

En un test realizado a un grupo de 42 personas se han obtenido las puntuaciones que muestra la tabla. Calcula la puntuación media.
  xi fi xi · fi
[10, 20) 15 1 15
[20, 30) 25 8 200
[30,40) 35 10 350
[40, 50) 45 9 405
[50, 60 55 8 440
[60,70) 65 4 260
[70, 80) 75 2 150
    42 1 820
media

Propiedades de la media aritmética

1 La suma de las desviaciones de todas las puntuaciones de una distribución respecto a la media de la misma igual a cero.
expresión
Las suma de las desviaciones de los números 8, 3, 5, 12, 10 de su media aritmética 7.6 es igual a 0:
8 − 7.6 + 3 − 7.6 + 5 − 7.6 + 12 − 7.6 + 10 − 7.6 =
= 0. 4 − 4.6 − 2.6 + 4. 4 + 2. 4 = 0
2 La media aritmética de los cuadrados de las desviaciones de los valores de la variable con respecto a un número cualquiera se hace mínima cuando dicho número coincide con la media aritmética.
mínimo
3 Si a todos los valores de la variable se les suma un mismo número, la media aritmética queda aumentada en dicho número.
4 Si todos los valores de la variable se multiplican por un mismo número la media aritmética queda multiplicada por dicho número.

Observaciones sobre la media aritmética

1 La media se puede hallar sólo para variables cuantitativas.
2 La media es independiente de las amplitudes de los intervalos.
3 La media es muy sensible a las puntuaciones extremas. Si tenemos una distribución con los siguientes pesos:
65 kg, 69kg , 65 kg, 72 kg, 66 kg, 75 kg, 70 kg, 110 kg.
La media es igual a 74 kg, que es una medida de centralización poco representativa de la distribución.
4 La media no se puede calcular si hay un intervalo con una amplitud indeterminada.

----------------------------------------------------------------------------------------------------------
DESVIACIÓN STANDAR

Desviación estándar

La desviación estándar o desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación estándar se representa por σ.
de relación típicadesviación

Desviación estándar para datos agrupados

desviación típicadesviación
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
desviación típicadesviación típica

Desviación estándar para datos agrupados

desviación típicadesviación típica

Ejercicios

Calcular la desviación estándar de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
Desviación típica
Calcular la desviación típica de la distribución de la tabla:
  xi fi xi · fi xi2 · fi
[10, 20) 15 1 15 225
[20, 30) 25 8 200 5000
[30,40) 35 10 350 12 250
[40, 50) 45 9 405 18 225
[50, 60) 55 8 440 24 200
[60,70) 65 4 260 16 900
[70, 80) 75 2 150 11 250
    42 1 820 88 050
media
desvición típica

Propiedades de la desviación estándar

1 La desviación estándar será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la desviación estándar no varía.
3 Si todos los valores de la variable se multiplican por un número la desviación estándar queda multiplicada por dicho número.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas desviaciones estándar se puede calcular la desviación estándar total.
Si todas las muestras tienen el mismo tamaño:
desviación típica
Si las muestras tienen distinto tamaño:
desviación típica

Observaciones sobre desviación la estándar

1 La desviación estándar, al igual que la media y la varianza, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la desviación estándar.
3 Cuanta más pequeña sea la desviación estándar mayor será la concentración de datos alrededor de la media.
-----------------------------------------------------------------------------------------------------------
VARIANZA
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística.
La varianza se representa por signo.
varianzavarianza

Varianza para datos agrupados

varianzavarianza

Para simplificar el cálculo de la varianza vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
varianzavarianza

Varianza para datos agrupados

varianzavarianza

Ejercicios de varianza

Calcular la varianza de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
varianza

Calcular la varianza de la distribución de la tabla:
  xi fi xi · fi xi2 · fi
[10, 20) 15 1 15 225
[20, 30) 25 8 200 5000
[30,40) 35 10 350 12 250
[40, 50) 45 9 405 18 225
[50, 60 55 8 440 24 200
[60,70) 65 4 260 16 900
[70, 80) 75 2 150 11 250
    42 1 820 88 050
media
varianza

Propiedades de la varianza

1 La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la varianza no varía.
3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total.
Si todas las muestras tienen el mismo tamaño:
varianzas
Si las muestras tienen distinto tamaño:
varianzas

Observaciones sobre la varianza

1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.
3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.
----------------------------------------------------------------------------------------------------------
DESVIACIÓN MEDIA

Desviación respecto a la media

La desviación respecto a la media es la diferencia en valor absoluto entre cada valor de la variable estadística y la media aritmética.
Di = |x - x|

Desviación media

La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
La desviación media se representa por signo
desviación media
desviación media

Ejemplo

Calcular la desviación media de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
desviación media

Desviación media para datos agrupados

Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la desviación media es:
delegación media
desviación media

Ejemplo

Calcular la desviación media de la distribución:
  xi fi xi · fi |x - x| |x - x| · fi
[10, 15) 12.5 3 37.5 9.286 27.858
[15, 20) 17.5 5 87.5 4.286 21.43
[20, 25) 22.5 7 157.5 0.714 4.998
[25, 30) 27.5 4 110 5.714 22.856
[30, 35) 32.5 2 65 10.174 21.428
    21 457.5   98.57
media
desviación media
1.Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide:
1. Calcular su media.
2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media.

1

media

2

varianza

2. A un conjunto de 5 números cuya media es 7.31 se le añaden los números 4.47 y 10.15. ¿Cuál es la media del nuevo conjunto de números?
media

3. Calcular la media de una distribución estadística que viene dada por la siguiente tabla:
xi 61 64 67 70 73
fi 5 18 42 27 8

xi fi xi · fi
61 5 305
64 18 1152
67 42 2814
71 27 1890
73 8 584
  100 6745
media

4. Hallar la media de la distribución estadística que viene dada por la siguiente tabla:
  [10, 15) [15, 20) [20, 25) [25, 30) [30, 35)
fi 3 5 7 4 2

  xi fi xi · fi
[10, 15) 12.5 3 37.5
[15, 20) 17.5 5 87.5
[20, 25) 22.5 7 157.5
[25, 30) 27.5 4 110
[30, 35) 32.5 2 65
    21 457.5
media

5. Calcular la media de la distribución estadística:
  [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, ∞)
fi 3 5 7 8 2 6

  xi fi Fi
[0, 5) 2.5 3 3
[5, 10) 7.5 5 8
[10, 15) 12.5 7 15
[15, 20) 17.5 8 23
[20, 25) 22.5 2 25
[25, ∞)   6 31
    31  

No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo.

6. Los resultados al lanzar un dado 200 veces vienen dados por la siguiente tabla:
  1 2 3 4 5 6
fi a 32 35 33 b 35
Determinar a y b sabiendo que la puntuación media es 3.6.

xi fi xi · fi
1 a a
2 32 64
3 35 125
4 33 132
5 b 5b
6 35 210
  135 + a + b 511 + a + 5b

ecuación
ecuación
a = 29 b = 36 


Un pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños de su consulta en el momento de andar por primera vez:
Meses Niños
9 1
10 4
11 9
12 16
13 11
14 8
15 1
1. Dibujar el polígono de frecuencias.
2. Calcular la moda, la mediana, la media y la varianza.

Polígono de frecuencias

polígono de frecuencias

xi fi Ni xi · fi i · fi
9 1 1 9 81
10 4 5 40 400
11 9 14 99 1089
12 16 30 192 2304
13 11 41 143 1859
14 8 49 112 1568
15 1 50 15 225
  50   610 7526

Moda

Mo = 12

Mediana

50/2 = 25 Me = 12

Media aritmética

media

Varianza

varianza
1. Hallar la desviación media, la varianza y la desviación típica de la series de números siguientes:
2, 3, 6, 8, 11.
12, 6, 7, 3, 15, 10, 18, 5.

2, 3, 6, 8, 11.

Media

media

Varianza

varianza

12, 6, 7, 3, 15, 10, 18, 5.

Media

media

Varianza

varianza

2.Un pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños de su consulta en el momento de andar por primera vez:
Meses Niños
9 1
10 4
11 9
12 16
13 11
14 8
15 1
Calcular la varianza.
xi fi Ni xi · fi i · fi
9 1 1 9 81
10 4 5 40 400
11 9 14 99 1089
12 16 30 192 2304
13 11 41 143 1859
14 8 49 112 1568
15 1 50 15 225
  50   610 7526

Media aritmética

media

Varianza

varianza

3.El resultado de lanzar dos dados 120 veces viene dado por la tabla:
Sumas 2 3 4 5 6 7 8 9 10 11 12
Veces 3 8 9 11 20 19 16 13 11 6 4
1. Calcular desviación típica.

xi fi xi · fi xi2 · fi
2 3 6 12
3 8 24 72
4 9 36 144
5 11 55 275
6 20 120 720
7 19 133 931
8 16 128 1024
9 13 117 1053
10 11 110 1100
11 6 66 726
12 4 48 576
  120 843 6633
media y varianza

4.Calcular la varianza de una distribución estadística que viene dada por la siguiente tabla:
  [10, 15) [15, 20) [20, 25) [25, 30) [30, 35)
fi 3 5 7 4 2

  xi fi xi · fi xi2 · fi
[10, 15) 12.5 3 37.5 468.75
[15, 20) 17.5 5 87.5 1537.3
[20, 25) 22.5 7 157.5 3543.8
[25, 30) 27.5 4 110 3025
[30, 35) 32.5 2 65 2112.5
    21 457.5 10681.25

Media

media

Varianza

varianza

5.Calcular la varianza de la distribución de la tabla:
  xi fi xi · fi xi2 · fi
[10, 20) 15 1 15 225
[20, 30) 25 8 200 5000
[30,40) 35 10 350 12 250
[40, 50) 45 9 405 18 225
[50, 60 55 8 440 24 200
[60,70) 65 4 260 16 900
[70, 80) 75 2 150 11 250
    42 1 820 88 050
media
varianza

6.Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla:
Altura [170, 175) [175, 180) [180, 185) [185, 190) [190, 195) [195, 2.00)
Nº de jugadores 1 3 4 8 5 2
Calcula la varianza.

  xi fi Fi xi · fi xi2 · fi
[1.70, 1.75) 1.725 1 1 1.725 2.976
[1.75, 1.80) 1.775 3 4 5.325 9.453
[1.80, 1.85) 1.825 4 8 7.3 13.324
[1.85, 1.90) 1.875 8 16 15 28.128
[1.90, 1.95) 1.925 5 21 9.625 18.53
[1.95, 2.00) 1.975 2 23 3.95 7.802
    23   42.925 80.213

Media

media

Varianza

desviación

7.Dada la distribución estadística:
  [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, ∞)
fi 3 5 7 8 2 6
Calcular la varianza.

  xi fi Fi
[0, 5) 2.5 3 3
[5, 10) 7.5 5 8
[10, 15) 12.5 7 15
[15, 20) 17.5 8 23
[20, 25) 22.5 2 25
[25, ∞)   6 31
    31  

Media

No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo.

Varianza

Si no hay media no es posible hallar la varianza.

8.Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide:
1. Calcular su media y su varianza.
2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media y varianza.

xi xi2
2 4
3 9
4 16
6 36
8 64
10 100
33 229

1

media

2

varianza