PROPIEDEDES DE LA MEDIA ARITMETICA
Definición de media aritmética
La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total de datos.
es el símbolo de la media aritmética.
Ejemplo
Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.
Media aritmética para datos agrupados
Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la media es:
Ejercicio de media aritmética
En un test realizado a un grupo de 42 personas se han obtenido las puntuaciones que muestra la tabla. Calcula la puntuación media.
xi | fi | xi · fi | |
---|---|---|---|
[10, 20) | 15 | 1 | 15 |
[20, 30) | 25 | 8 | 200 |
[30,40) | 35 | 10 | 350 |
[40, 50) | 45 | 9 | 405 |
[50, 60 | 55 | 8 | 440 |
[60,70) | 65 | 4 | 260 |
[70, 80) | 75 | 2 | 150 |
42 | 1 820 |
Propiedades de la media aritmética
1. La suma de las desviaciones de todas las puntuaciones de una distribución respecto a la media de la misma igual a cero.
La suma de las desviaciones de los números 8, 3, 5, 12, 10 de su media aritmética 7.6 es igual a 0:
8 −
7.6 + 3 − 7.6 + 5 −
7.6 + 12 − 7.6 + 10 −
7.6 =
= 0. 4 − 4.6 − 2.6 + 4. 4 + 2. 4 = 0
2. La suma de los cuadrados de las desviaciones de los valores de la variable con respecto a un número cualquiera se hace mínima cuando dicho número coincide con la media aritmética.
3. Si a todos los valores de la variable se les suma un mismo número, la media aritmética queda aumentada en dicho número.
4. Si todos los valores de la variable se multiplican por un mismo número la media aritmética queda multiplicada por dicho número.
Observaciones sobre la media aritmética
1. La media se puede hallar sólo para variables cuantitativas.
2. La media es independiente de las amplitudes de los intervalos.
3. La media es muy sensible a las puntuaciones extremas. Si tenemos una distribución con los siguientes pesos:
65 kg, 69kg , 65 kg, 72 kg, 66 kg, 75 kg, 70 kg, 110 kg.
La media es igual a 74 kg, que es una medida de centralización poco representativa de la distribución.
4. La media no se puede calcular si hay un intervalo con una amplitud indeterminada.
xi | fi | |
---|---|---|
[60, 63) | 61.5 | 5 |
[63, 66) | 64.5 | 18 |
[66, 69) | 67.5 | 42 |
[69, 72) | 70.5 | 27 |
[72, ∞ ) | 8 | |
100 |
En este caso no es posible hallar la media porque no podemos calcular la marca de clase de último intervalo.
-----------------------------------------------------------------------------------------------------
MEDIA, MEDIANA, MODA
Moda
La moda es el valor que tiene mayor frecuencia absoluta.
Se representa por Mo.
Se puede hallar la moda para variables cualitativas y cuantitativas.
Hallar la moda de la distribución:
2, 3, 3, 4, 4, 4, 5, 5 Mo= 4
Si en un grupo hay dos o varias puntuaciones con la misma frecuencia y esa frecuencia es la máxima, la distribución es bimodal o multimodal, es decir, tiene varias modas.
1, 1, 1, 4, 4, 5, 5, 5, 7, 8, 9, 9, 9Mo= 1, 5, 9
Cuando todas las puntuaciones de un grupo tienen la misma frecuencia, no hay moda.
2, 2, 3, 3, 6, 6, 9, 9
Si dos puntuaciones adyacentes tienen la frecuencia máxima, la moda es el promedio de las dos puntuaciones adyacentes.
0, 1, 3, 3, 5, 5, 7, 8Mo = 4
Cálculo de la moda para datos agrupados
1º Todos los intervalos tienen la misma amplitud.
Li-1 es el límite inferior de la clase modal.
fi es la frecuencia absoluta de la clase modal.
fi--1 es la frecuencia absoluta inmediatamente inferior a la en clase modal.
fi-+1 es la frecuencia absoluta inmediatamente posterior a la clase modal.
ai es la amplitud de la clase.
También se utiliza otra fórmula de la moda que da un valor aproximado de ésta:
Ejemplo
Calcular la moda de una distribución estadística que viene dada por la siguiente tabla:
fi | |
---|---|
[60, 63) | 5 |
[63, 66) | 18 |
[66, 69) | 42 |
[69, 72) | 27 |
[72, 75) | 8 |
100 |
2º Los intervalos tienen amplitudes distintas.
En primer lugar tenemos que hallar las alturas.
La clase modal es la que tiene mayor altura.
La fórmula de la moda aproximada cuando existen distintas amplitudes es:
Mediana
Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.
Cálculo de la mediana
1 Ordenamos los datos de menor a mayor.
2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.
2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5
3 Si la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales.
7, 8, 9, 10, 11, 12Me= 9.5
Cálculo de la mediana para datos agrupados
La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre .
Li-1 es el límite inferior de la clase donde se encuentra la mediana.
es la semisuma de las frecuencias absolutas.
Fi-1 es la frecuencia acumulada anterior a la clase mediana.
ai es la amplitud de la clase.
La mediana es independiente de las amplitudes de los intervalos.
Ejemplo
Calcular la mediana de una distribución estadística que viene dada por la siguiente tabla:
fi | Fi | |
---|---|---|
[60, 63) | 5 | 5 |
[63, 66) | 18 | 23 |
[66, 69) | 42 | 65 |
[69, 72) | 27 | 92 |
[72, 75) | 8 | 100 |
100 |
100 / 2 = 50
Clase modal: [66, 69)
Media aritmética
La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total de datos.
es el símbolo de la media aritmética.
Ejemplo
Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.
Media aritmética para datos agrupados
Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la media es:
Ejercicio de media aritmética
En un test realizado a un grupo de 42 personas se han obtenido las puntuaciones que muestra la tabla. Calcula la puntuación media.
xi | fi | xi · fi | |
---|---|---|---|
[10, 20) | 15 | 1 | 15 |
[20, 30) | 25 | 8 | 200 |
[30,40) | 35 | 10 | 350 |
[40, 50) | 45 | 9 | 405 |
[50, 60 | 55 | 8 | 440 |
[60,70) | 65 | 4 | 260 |
[70, 80) | 75 | 2 | 150 |
42 | 1 820 |
Propiedades de la media aritmética
1 La suma de las desviaciones de todas las puntuaciones de una distribución respecto a la media de la misma igual a cero.
Las suma de las desviaciones de los números 8, 3, 5, 12, 10 de su media aritmética 7.6 es igual a 0:
8 −
7.6 + 3 − 7.6 + 5 −
7.6 + 12 − 7.6 + 10 −
7.6 =
= 0. 4 − 4.6 − 2.6 + 4. 4 + 2. 4 = 0
2 La media aritmética de los cuadrados de las desviaciones de los valores de la variable con respecto a un número cualquiera se hace mínima cuando dicho número coincide con la media aritmética.
3 Si a todos los valores de la variable se les suma un mismo número, la media aritmética queda aumentada en dicho número.
4 Si todos los valores de la variable se multiplican por un mismo número la media aritmética queda multiplicada por dicho número.
Observaciones sobre la media aritmética
1 La media se puede hallar sólo para variables cuantitativas.
2 La media es independiente de las amplitudes de los intervalos.
3 La media es muy sensible a las puntuaciones extremas. Si tenemos una distribución con los siguientes pesos:
65 kg, 69kg , 65 kg, 72 kg, 66 kg, 75 kg, 70 kg, 110 kg.
La media es igual a 74 kg, que es una medida de centralización poco representativa de la distribución.
4 La media no se puede calcular si hay un intervalo con una amplitud indeterminada.
----------------------------------------------------------------------------------------------------------
DESVIACIÓN STANDAR
Desviación estándar
La desviación estándar o desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación estándar se representa por σ.
Desviación estándar para datos agrupados
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
Desviación estándar para datos agrupados
Ejercicios
Calcular la desviación estándar de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Calcular la desviación típica de la distribución de la tabla:
xi | fi | xi · fi | xi2 · fi | |
---|---|---|---|---|
[10, 20) | 15 | 1 | 15 | 225 |
[20, 30) | 25 | 8 | 200 | 5000 |
[30,40) | 35 | 10 | 350 | 12 250 |
[40, 50) | 45 | 9 | 405 | 18 225 |
[50, 60) | 55 | 8 | 440 | 24 200 |
[60,70) | 65 | 4 | 260 | 16 900 |
[70, 80) | 75 | 2 | 150 | 11 250 |
42 | 1 820 | 88 050 |
Propiedades de la desviación estándar
1 La desviación estándar será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la desviación estándar no varía.
3 Si todos los valores de la variable se multiplican por un número la desviación estándar queda multiplicada por dicho número.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas desviaciones estándar se puede calcular la desviación estándar total.
Si todas las muestras tienen el mismo tamaño:
Si las muestras tienen distinto tamaño:
Observaciones sobre desviación la estándar
1 La desviación estándar, al igual que la media y la varianza, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la desviación estándar.
3 Cuanta más pequeña sea la desviación estándar mayor será la concentración de datos alrededor de la media.
-----------------------------------------------------------------------------------------------------------
VARIANZA
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística.
La varianza se representa por .
Varianza para datos agrupados
Para simplificar el cálculo de la varianza vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
Varianza para datos agrupados
Ejercicios de varianza
Calcular la varianza de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Calcular la varianza de la distribución de la tabla:
xi | fi | xi · fi | xi2 · fi | |
---|---|---|---|---|
[10, 20) | 15 | 1 | 15 | 225 |
[20, 30) | 25 | 8 | 200 | 5000 |
[30,40) | 35 | 10 | 350 | 12 250 |
[40, 50) | 45 | 9 | 405 | 18 225 |
[50, 60 | 55 | 8 | 440 | 24 200 |
[60,70) | 65 | 4 | 260 | 16 900 |
[70, 80) | 75 | 2 | 150 | 11 250 |
42 | 1 820 | 88 050 |
Propiedades de la varianza
1 La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la varianza no varía.
3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total.
Si todas las muestras tienen el mismo tamaño:
Si las muestras tienen distinto tamaño:
Observaciones sobre la varianza
1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.
3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.
----------------------------------------------------------------------------------------------------------
DESVIACIÓN MEDIA
Desviación respecto a la media
La desviación respecto a la media es la diferencia en valor absoluto entre cada valor de la variable estadística y la media aritmética.
Di = |x - x|
Desviación media
La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
La desviación media se representa por
Ejemplo
Calcular la desviación media de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Desviación media para datos agrupados
Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la desviación media es:
Ejemplo
Calcular la desviación media de la distribución:
xi | fi | xi · fi | |x - x| | |x - x| · fi | |
[10, 15) | 12.5 | 3 | 37.5 | 9.286 | 27.858 |
---|---|---|---|---|---|
[15, 20) | 17.5 | 5 | 87.5 | 4.286 | 21.43 |
[20, 25) | 22.5 | 7 | 157.5 | 0.714 | 4.998 |
[25, 30) | 27.5 | 4 | 110 | 5.714 | 22.856 |
[30, 35) | 32.5 | 2 | 65 | 10.174 | 21.428 |
21 | 457.5 | 98.57 |
1.Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide:
1. Calcular su media.
2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media.
1
2
2. A un conjunto de 5 números cuya media es 7.31 se le añaden los números 4.47 y 10.15. ¿Cuál es la media del nuevo conjunto de números?
3. Calcular la media de una distribución estadística que viene dada por la siguiente tabla:
xi | 61 | 64 | 67 | 70 | 73 |
fi | 5 | 18 | 42 | 27 | 8 |
xi | fi | xi · fi |
61 | 5 | 305 |
64 | 18 | 1152 |
67 | 42 | 2814 |
71 | 27 | 1890 |
73 | 8 | 584 |
100 | 6745 |
4. Hallar la media de la distribución estadística que viene dada por la siguiente tabla:
[10, 15) | [15, 20) | [20, 25) | [25, 30) | [30, 35) | |
fi | 3 | 5 | 7 | 4 | 2 |
xi | fi | xi · fi | |
[10, 15) | 12.5 | 3 | 37.5 |
[15, 20) | 17.5 | 5 | 87.5 |
[20, 25) | 22.5 | 7 | 157.5 |
[25, 30) | 27.5 | 4 | 110 |
[30, 35) | 32.5 | 2 | 65 |
21 | 457.5 |
5. Calcular la media de la distribución estadística:
[0, 5) | [5, 10) | [10, 15) | [15, 20) | [20, 25) | [25, ∞) | |
fi | 3 | 5 | 7 | 8 | 2 | 6 |
xi | fi | Fi | |
[0, 5) | 2.5 | 3 | 3 |
[5, 10) | 7.5 | 5 | 8 |
[10, 15) | 12.5 | 7 | 15 |
[15, 20) | 17.5 | 8 | 23 |
[20, 25) | 22.5 | 2 | 25 |
[25, ∞) | 6 | 31 | |
31 |
No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo.
6. Los resultados al lanzar un dado 200 veces vienen dados por la siguiente tabla:
1 | 2 | 3 | 4 | 5 | 6 | |
fi | a | 32 | 35 | 33 | b | 35 |
Determinar a y b sabiendo que la puntuación media es 3.6.
xi | fi | xi · fi |
1 | a | a |
2 | 32 | 64 |
3 | 35 | 125 |
4 | 33 | 132 |
5 | b | 5b |
6 | 35 | 210 |
135 + a + b | 511 + a + 5b |
a = 29 b = 36
Un pediatra obtuvo la siguiente tabla sobre
los meses de edad de 50 niños de su consulta en el momento de andar por
primera vez:
Meses | Niños |
9 | 1 |
10 | 4 |
11 | 9 |
12 | 16 |
13 | 11 |
14 | 8 |
15 | 1 |
1. Dibujar el polígono de frecuencias.
2. Calcular la moda, la mediana, la media y la varianza.
Polígono de frecuencias
xi | fi | Ni | xi · fi | x²i · fi |
9 | 1 | 1 | 9 | 81 |
10 | 4 | 5 | 40 | 400 |
11 | 9 | 14 | 99 | 1089 |
12 | 16 | 30 | 192 | 2304 |
13 | 11 | 41 | 143 | 1859 |
14 | 8 | 49 | 112 | 1568 |
15 | 1 | 50 | 15 | 225 |
50 | 610 | 7526 |
Moda
Mo = 12
Mediana
50/2 = 25 Me = 12
Media aritmética
Varianza
1. Hallar la desviación media, la varianza y la desviación típica de la series de números siguientes:
2, 3, 6, 8, 11.
12, 6, 7, 3, 15, 10, 18, 5.
2, 3, 6, 8, 11.
Media
Varianza
12, 6, 7, 3, 15, 10, 18, 5.
Media
Varianza
2.Un
pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños
de su consulta en el momento de andar por primera vez:
Meses | Niños |
9 | 1 |
10 | 4 |
11 | 9 |
12 | 16 |
13 | 11 |
14 | 8 |
15 | 1 |
Calcular la varianza.
xi | fi | Ni | xi · fi | x²i · fi |
9 | 1 | 1 | 9 | 81 |
10 | 4 | 5 | 40 | 400 |
11 | 9 | 14 | 99 | 1089 |
12 | 16 | 30 | 192 | 2304 |
13 | 11 | 41 | 143 | 1859 |
14 | 8 | 49 | 112 | 1568 |
15 | 1 | 50 | 15 | 225 |
50 | 610 | 7526 |
Media aritmética
Varianza
3.El resultado de lanzar dos dados 120 veces viene dado por la tabla:
Sumas | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Veces | 3 | 8 | 9 | 11 | 20 | 19 | 16 | 13 | 11 | 6 | 4 |
1. Calcular desviación típica.
xi | fi | xi · fi | xi2 · fi |
2 | 3 | 6 | 12 |
3 | 8 | 24 | 72 |
4 | 9 | 36 | 144 |
5 | 11 | 55 | 275 |
6 | 20 | 120 | 720 |
7 | 19 | 133 | 931 |
8 | 16 | 128 | 1024 |
9 | 13 | 117 | 1053 |
10 | 11 | 110 | 1100 |
11 | 6 | 66 | 726 |
12 | 4 | 48 | 576 |
120 | 843 | 6633 |
4.Calcular la varianza de una distribución estadística que viene dada por la siguiente tabla:
[10, 15) | [15, 20) | [20, 25) | [25, 30) | [30, 35) | |
fi | 3 | 5 | 7 | 4 | 2 |
xi | fi | xi · fi | xi2 · fi | |
[10, 15) | 12.5 | 3 | 37.5 | 468.75 |
[15, 20) | 17.5 | 5 | 87.5 | 1537.3 |
[20, 25) | 22.5 | 7 | 157.5 | 3543.8 |
[25, 30) | 27.5 | 4 | 110 | 3025 |
[30, 35) | 32.5 | 2 | 65 | 2112.5 |
21 | 457.5 | 10681.25 |
Media
Varianza
5.Calcular la varianza de la distribución de la tabla:
xi | fi | xi · fi | xi2 · fi | |
---|---|---|---|---|
[10, 20) | 15 | 1 | 15 | 225 |
[20, 30) | 25 | 8 | 200 | 5000 |
[30,40) | 35 | 10 | 350 | 12 250 |
[40, 50) | 45 | 9 | 405 | 18 225 |
[50, 60 | 55 | 8 | 440 | 24 200 |
[60,70) | 65 | 4 | 260 | 16 900 |
[70, 80) | 75 | 2 | 150 | 11 250 |
42 | 1 820 | 88 050 |
6.Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla:
Altura | [170, 175) | [175, 180) | [180, 185) | [185, 190) | [190, 195) | [195, 2.00) |
Nº de jugadores | 1 | 3 | 4 | 8 | 5 | 2 |
Calcula la varianza.
xi | fi | Fi | xi · fi | xi2 · fi | |
[1.70, 1.75) | 1.725 | 1 | 1 | 1.725 | 2.976 |
[1.75, 1.80) | 1.775 | 3 | 4 | 5.325 | 9.453 |
[1.80, 1.85) | 1.825 | 4 | 8 | 7.3 | 13.324 |
[1.85, 1.90) | 1.875 | 8 | 16 | 15 | 28.128 |
[1.90, 1.95) | 1.925 | 5 | 21 | 9.625 | 18.53 |
[1.95, 2.00) | 1.975 | 2 | 23 | 3.95 | 7.802 |
23 | 42.925 | 80.213 |
Media
Varianza
7.Dada la distribución estadística:
[0, 5) | [5, 10) | [10, 15) | [15, 20) | [20, 25) | [25, ∞) | |
fi | 3 | 5 | 7 | 8 | 2 | 6 |
Calcular la varianza.
xi | fi | Fi | |
[0, 5) | 2.5 | 3 | 3 |
[5, 10) | 7.5 | 5 | 8 |
[10, 15) | 12.5 | 7 | 15 |
[15, 20) | 17.5 | 8 | 23 |
[20, 25) | 22.5 | 2 | 25 |
[25, ∞) | 6 | 31 | |
31 |
Media
No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo.
Varianza
Si no hay media no es posible hallar la varianza.
8.Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide:
1. Calcular su media y su varianza.
2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media y varianza.
xi | xi2 |
2 | 4 |
3 | 9 |
4 | 16 |
6 | 36 |
8 | 64 |
10 | 100 |
33 | 229 |